1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
/*<--- Skipping configuration 'get_unaligned_be32' since the value of 'get_unaligned_be32' is unknown. Use -D if you want to check it. You can use -U to skip it explicitly.<--- Skipping configuration 'get_unaligned_le32' since the value of 'get_unaligned_le32' is unknown. Use -D if you want to check it. You can use -U to skip it explicitly.<--- Skipping configuration 'put_unaligned_be32' since the value of 'put_unaligned_be32' is unknown. Use -D if you want to check it. You can use -U to skip it explicitly.<--- Skipping configuration 'put_unaligned_le32' since the value of 'put_unaligned_le32' is unknown. Use -D if you want to check it. You can use -U to skip it explicitly.
 * Simple XZ decoder command line tool
 *
 * Author: Lasse Collin <lasse.collin@tukaani.org>
 *
 * This file has been put into the public domain.
 * You can do whatever you want with this file.
 * Modified for toybox by Isaac Dunham
USE_XZCAT(NEWTOY(xzcat, NULL, TOYFLAG_USR|TOYFLAG_BIN))

config XZCAT
  bool "xzcat"
  default n
  help
    usage: xzcat [filename...]
    
    Decompress listed files to stdout. Use stdin if no files listed.

*/
#define FOR_xzcat
#include "toys.h"

// BEGIN xz.h

/**
 * enum xz_ret - Return codes
 * @XZ_OK:                  Everything is OK so far. More input or more
 *                          output space is required to continue.
 * @XZ_STREAM_END:          Operation finished successfully.
 * @XZ_UNSUPPORTED_CHECK:   Integrity check type is not supported. Decoding
 *                          is still possible in multi-call mode by simply
 *                          calling xz_dec_run() again.
 *                          Note that this return value is used only if
 *                          XZ_DEC_ANY_CHECK was defined at build time,
 *                          which is not used in the kernel. Unsupported
 *                          check types return XZ_OPTIONS_ERROR if
 *                          XZ_DEC_ANY_CHECK was not defined at build time.
 * @XZ_MEM_ERROR:           Allocating memory failed. The amount of memory 
 *                          that was tried to be allocated was no more than the
 *                          dict_max argument given to xz_dec_init().
 * @XZ_MEMLIMIT_ERROR:      A bigger LZMA2 dictionary would be needed than
 *                          allowed by the dict_max argument given to
 *                          xz_dec_init().
 * @XZ_FORMAT_ERROR:        File format was not recognized (wrong magic
 *                          bytes).
 * @XZ_OPTIONS_ERROR:       This implementation doesn't support the requested
 *                          compression options. In the decoder this means
 *                          that the header CRC32 matches, but the header
 *                          itself specifies something that we don't support.
 * @XZ_DATA_ERROR:          Compressed data is corrupt.
 * @XZ_BUF_ERROR:           Cannot make any progress. Details are slightly
 *                          different between multi-call and single-call
 *                          mode; more information below.
 *
 * XZ_BUF_ERROR is returned when two consecutive calls to XZ code cannot 
 * consume any input and cannot produce any new output. This happens when
 * there is no new input available, or the output buffer is full while at
 * least one output byte is still pending. Assuming your code is not buggy,
 * you can get this error only when decoding a compressed stream that is 
 * truncated or otherwise corrupt.
 */
enum xz_ret {
  XZ_OK,
  XZ_STREAM_END,
  XZ_UNSUPPORTED_CHECK,
  XZ_MEM_ERROR,
  XZ_MEMLIMIT_ERROR,
  XZ_FORMAT_ERROR,
  XZ_OPTIONS_ERROR,
  XZ_DATA_ERROR,
  XZ_BUF_ERROR
};

/**
 * struct xz_buf - Passing input and output buffers to XZ code
 * @in:         Beginning of the input buffer. This may be NULL if and only
 *              if in_pos is equal to in_size.
 * @in_pos:     Current position in the input buffer. This must not exceed
 *              in_size.
 * @in_size:    Size of the input buffer
 * @out:        Beginning of the output buffer. This may be NULL if and only
 *              if out_pos is equal to out_size.
 * @out_pos:    Current position in the output buffer. This must not exceed
 *              out_size.
 * @out_size:   Size of the output buffer
 *
 * Only the contents of the output buffer from out[out_pos] onward, and
 * the variables in_pos and out_pos are modified by the XZ code.
 */
struct xz_buf {
  const uint8_t *in;
  size_t in_pos;
  size_t in_size;

  uint8_t *out;
  size_t out_pos;
  size_t out_size;
};

/**
 * struct xz_dec - Opaque type to hold the XZ decoder state
 */
struct xz_dec;

/**
 * xz_dec_init() - Allocate and initialize a XZ decoder state
 * @mode:       Operation mode
 * @dict_max:   Maximum size of the LZMA2 dictionary (history buffer) for
 *              multi-call decoding. LZMA2 dictionary is always 2^n bytes
 *              or 2^n + 2^(n-1) bytes (the latter sizes are less common
 *              in practice), so other values for dict_max don't make sense.
 *              In the kernel, dictionary sizes of 64 KiB, 128 KiB, 256 KiB,
 *              512 KiB, and 1 MiB are probably the only reasonable values,
 *              except for kernel and initramfs images where a bigger
 *              dictionary can be fine and useful.
 *
 * dict_max specifies the maximum allowed dictionary size that xz_dec_run()
 * may allocate once it has parsed the dictionary size from the stream
 * headers. This way excessive allocations can be avoided while still
 * limiting the maximum memory usage to a sane value to prevent running the
 * system out of memory when decompressing streams from untrusted sources.
 *
 * On success, xz_dec_init() returns a pointer to struct xz_dec, which is
 * ready to be used with xz_dec_run(). If memory allocation fails,
 * xz_dec_init() returns NULL.
 */
struct xz_dec *xz_dec_init(uint32_t dict_max);

/**
 * xz_dec_run() - Run the XZ decoder
 * @s:          Decoder state allocated using xz_dec_init()
 * @b:          Input and output buffers
 *
 * The possible return values depend on build options and operation mode.
 * See enum xz_ret for details.
 *
 * Note that if an error occurs in single-call mode (return value is not
 * XZ_STREAM_END), b->in_pos and b->out_pos are not modified and the
 * contents of the output buffer from b->out[b->out_pos] onward are
 * undefined. This is true even after XZ_BUF_ERROR, because with some filter
 * chains, there may be a second pass over the output buffer, and this pass
 * cannot be properly done if the output buffer is truncated. Thus, you
 * cannot give the single-call decoder a too small buffer and then expect to
 * get that amount valid data from the beginning of the stream. You must use
 * the multi-call decoder if you don't want to uncompress the whole stream.
 */
enum xz_ret xz_dec_run(struct xz_dec *s, struct xz_buf *b);

/**
 * xz_dec_reset() - Reset an already allocated decoder state
 * @s:          Decoder state allocated using xz_dec_init()
 *
 * This function can be used to reset the multi-call decoder state without
 * freeing and reallocating memory with xz_dec_end() and xz_dec_init().
 *
 * In single-call mode, xz_dec_reset() is always called in the beginning of
 * xz_dec_run(). Thus, explicit call to xz_dec_reset() is useful only in
 * multi-call mode.
 */
void xz_dec_reset(struct xz_dec *s);

/**
 * xz_dec_end() - Free the memory allocated for the decoder state
 * @s:          Decoder state allocated using xz_dec_init(). If s is NULL,
 *              this function does nothing.
 */
void xz_dec_end(struct xz_dec *s);

/*
 * Update CRC32 value using the polynomial from IEEE-802.3. To start a new
 * calculation, the third argument must be zero. To continue the calculation,
 * the previously returned value is passed as the third argument.
 */
static uint32_t xz_crc32_table[256];

uint32_t xz_crc32(const uint8_t *buf, size_t size, uint32_t crc)
{
  crc = ~crc;

  while (size != 0) {
    crc = xz_crc32_table[*buf++ ^ (crc & 0xFF)] ^ (crc >> 8);
    --size;
  }

  return ~crc;
}

static uint64_t xz_crc64_table[256];


// END xz.h

static uint8_t in[BUFSIZ];
static uint8_t out[BUFSIZ];

void do_xzcat(int fd, char *name)
{
  struct xz_buf b;
  struct xz_dec *s;
  enum xz_ret ret;
  const char *msg;

  crc_init(xz_crc32_table, 1);
  const uint64_t poly = 0xC96C5795D7870F42ULL;
  uint32_t i;
  uint32_t j;
  uint64_t r;

  /* initialize CRC64 table*/
  for (i = 0; i < 256; ++i) {
    r = i;
    for (j = 0; j < 8; ++j)
      r = (r >> 1) ^ (poly & ~((r & 1) - 1));

    xz_crc64_table[i] = r;
  }

  /*
   * Support up to 64 MiB dictionary. The actually needed memory
   * is allocated once the headers have been parsed.
   */
  s = xz_dec_init(1 << 26);
  if (s == NULL) {
    msg = "Memory allocation failed\n";
    goto error;
  }

  b.in = in;
  b.in_pos = 0;
  b.in_size = 0;
  b.out = out;
  b.out_pos = 0;
  b.out_size = BUFSIZ;

  for (;;) {
    if (b.in_pos == b.in_size) {
      b.in_size = read(fd, in, sizeof(in));
      b.in_pos = 0;
    }

    ret = xz_dec_run(s, &b);

    if (b.out_pos == sizeof(out)) {
      if (fwrite(out, 1, b.out_pos, stdout) != b.out_pos) {
        msg = "Write error\n";
        goto error;
      }

      b.out_pos = 0;
    }

    if (ret == XZ_OK)
      continue;

    if (ret == XZ_UNSUPPORTED_CHECK)
      continue;

    if (fwrite(out, 1, b.out_pos, stdout) != b.out_pos) {
      msg = "Write error\n";
      goto error;
    }

    switch (ret) {
    case XZ_STREAM_END:
      xz_dec_end(s);
      return;

    case XZ_MEM_ERROR:
      msg = "Memory allocation failed\n";
      goto error;

    case XZ_MEMLIMIT_ERROR:
      msg = "Memory usage limit reached\n";
      goto error;

    case XZ_FORMAT_ERROR:
      msg = "Not a .xz file\n";
      goto error;

    case XZ_OPTIONS_ERROR:
      msg = "Unsupported options in the .xz headers\n";
      goto error;

    case XZ_DATA_ERROR:
    case XZ_BUF_ERROR:
      msg = "File is corrupt\n";
      goto error;

    default:
      msg = "Bug!\n";
      goto error;
    }
  }

error:
  xz_dec_end(s);
  error_exit("%s", msg);
}

void xzcat_main(void)
{
  loopfiles(toys.optargs, do_xzcat);
}

// BEGIN xz_private.h


/* Uncomment as needed to enable BCJ filter decoders. 
 * These cost about 2.5 k when all are enabled; SPARC and IA64 make 0.7 k
 * */

#define XZ_DEC_X86
#define XZ_DEC_POWERPC
#define XZ_DEC_IA64
#define XZ_DEC_ARM
#define XZ_DEC_ARMTHUMB
#define XZ_DEC_SPARC


#define memeq(a, b, size) (memcmp(a, b, size) == 0)

#ifndef min
#	define min(x, y) ((x) < (y) ? (x) : (y))
#endif
#define min_t(type, x, y) min(x, y)


/* Inline functions to access unaligned unsigned 32-bit integers */
#ifndef get_unaligned_le32
static inline uint32_t get_unaligned_le32(const uint8_t *buf)
{
  return (uint32_t)buf[0]
      | ((uint32_t)buf[1] << 8)
      | ((uint32_t)buf[2] << 16)
      | ((uint32_t)buf[3] << 24);
}
#endif

#ifndef get_unaligned_be32
static inline uint32_t get_unaligned_be32(const uint8_t *buf)
{
  return (uint32_t)(buf[0] << 24)
      | ((uint32_t)buf[1] << 16)
      | ((uint32_t)buf[2] << 8)
      | (uint32_t)buf[3];
}
#endif

#ifndef put_unaligned_le32
static inline void put_unaligned_le32(uint32_t val, uint8_t *buf)
{
  buf[0] = (uint8_t)val;
  buf[1] = (uint8_t)(val >> 8);
  buf[2] = (uint8_t)(val >> 16);
  buf[3] = (uint8_t)(val >> 24);
}
#endif

#ifndef put_unaligned_be32
static inline void put_unaligned_be32(uint32_t val, uint8_t *buf)
{
  buf[0] = (uint8_t)(val >> 24);
  buf[1] = (uint8_t)(val >> 16);
  buf[2] = (uint8_t)(val >> 8);
  buf[3] = (uint8_t)val;
}
#endif

/*
 * Use get_unaligned_le32() also for aligned access for simplicity. On
 * little endian systems, #define get_le32(ptr) (*(const uint32_t *)(ptr))
 * could save a few bytes in code size.
 */
#ifndef get_le32
#	define get_le32 get_unaligned_le32
#endif

/*
 * If any of the BCJ filter decoders are wanted, define XZ_DEC_BCJ.
 * XZ_DEC_BCJ is used to enable generic support for BCJ decoders.
 */
#ifndef XZ_DEC_BCJ
#	if defined(XZ_DEC_X86) || defined(XZ_DEC_POWERPC) \
      || defined(XZ_DEC_IA64) || defined(XZ_DEC_ARM) \
      || defined(XZ_DEC_ARM) || defined(XZ_DEC_ARMTHUMB) \
      || defined(XZ_DEC_SPARC)
#		define XZ_DEC_BCJ
#	endif
#endif

/*
 * Allocate memory for LZMA2 decoder. xz_dec_lzma2_reset() must be used
 * before calling xz_dec_lzma2_run().
 */
struct xz_dec_lzma2 *xz_dec_lzma2_create(uint32_t dict_max);

/*
 * Decode the LZMA2 properties (one byte) and reset the decoder. Return
 * XZ_OK on success, XZ_MEMLIMIT_ERROR if the preallocated dictionary is not
 * big enough, and XZ_OPTIONS_ERROR if props indicates something that this
 * decoder doesn't support.
 */
enum xz_ret xz_dec_lzma2_reset(struct xz_dec_lzma2 *s,
           uint8_t props);

/* Decode raw LZMA2 stream from b->in to b->out. */
enum xz_ret xz_dec_lzma2_run(struct xz_dec_lzma2 *s,
               struct xz_buf *b);

// END "xz_private.h"




/*
 * Branch/Call/Jump (BCJ) filter decoders
 * The rest of the code is inside this ifdef. It makes things a little more
 * convenient when building without support for any BCJ filters.
 */
#ifdef XZ_DEC_BCJ

struct xz_dec_bcj {
  /* Type of the BCJ filter being used */
  enum {
    BCJ_X86 = 4,        /* x86 or x86-64 */
    BCJ_POWERPC = 5,    /* Big endian only */
    BCJ_IA64 = 6,       /* Big or little endian */
    BCJ_ARM = 7,        /* Little endian only */
    BCJ_ARMTHUMB = 8,   /* Little endian only */
    BCJ_SPARC = 9       /* Big or little endian */
  } type;

  /*
   * Return value of the next filter in the chain. We need to preserve
   * this information across calls, because we must not call the next
   * filter anymore once it has returned XZ_STREAM_END.
   */
  enum xz_ret ret;

  /*
   * Absolute position relative to the beginning of the uncompressed
   * data (in a single .xz Block). We care only about the lowest 32
   * bits so this doesn't need to be uint64_t even with big files.
   */
  uint32_t pos;

  /* x86 filter state */
  uint32_t x86_prev_mask;

  /* Temporary space to hold the variables from struct xz_buf */
  uint8_t *out;
  size_t out_pos;
  size_t out_size;

  struct {
    /* Amount of already filtered data in the beginning of buf */
    size_t filtered;

    /* Total amount of data currently stored in buf  */
    size_t size;

    /*
     * Buffer to hold a mix of filtered and unfiltered data. This
     * needs to be big enough to hold Alignment + 2 * Look-ahead:
     *
     * Type         Alignment   Look-ahead
     * x86              1           4
     * PowerPC          4           0
     * IA-64           16           0
     * ARM              4           0
     * ARM-Thumb        2           2
     * SPARC            4           0
     */
    uint8_t buf[16];
  } temp;
};

/*
 * Decode the Filter ID of a BCJ filter. This implementation doesn't
 * support custom start offsets, so no decoding of Filter Properties
 * is needed. Returns XZ_OK if the given Filter ID is supported.
 * Otherwise XZ_OPTIONS_ERROR is returned.
 */
enum xz_ret xz_dec_bcj_reset(struct xz_dec_bcj *s, uint8_t id);

/*
 * Decode raw BCJ + LZMA2 stream. This must be used only if there actually is
 * a BCJ filter in the chain. If the chain has only LZMA2, xz_dec_lzma2_run()
 * must be called directly.
 */
enum xz_ret xz_dec_bcj_run(struct xz_dec_bcj *s,
             struct xz_dec_lzma2 *lzma2,
             struct xz_buf *b);

#ifdef XZ_DEC_X86
/*
 * This is used to test the most significant byte of a memory address
 * in an x86 instruction.
 */
static inline int bcj_x86_test_msbyte(uint8_t b)
{
  return b == 0x00 || b == 0xFF;
}

static size_t bcj_x86(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
{
  static const int mask_to_allowed_status[8]
    = { 1,1,1,0,1,0,0,0 };

  static const uint8_t mask_to_bit_num[8] = { 0, 1, 2, 2, 3, 3, 3, 3 };

  size_t i;
  size_t prev_pos = (size_t)-1;
  uint32_t prev_mask = s->x86_prev_mask;
  uint32_t src;
  uint32_t dest;
  uint32_t j;
  uint8_t b;

  if (size <= 4)
    return 0;

  size -= 4;
  for (i = 0; i < size; ++i) {
    if ((buf[i] & 0xFE) != 0xE8)
      continue;

    prev_pos = i - prev_pos;
    if (prev_pos > 3) {
      prev_mask = 0;
    } else {
      prev_mask = (prev_mask << (prev_pos - 1)) & 7;
      if (prev_mask != 0) {
        b = buf[i + 4 - mask_to_bit_num[prev_mask]];
        if (!mask_to_allowed_status[prev_mask]
            || bcj_x86_test_msbyte(b)) {
          prev_pos = i;
          prev_mask = (prev_mask << 1) | 1;
          continue;
        }
      }
    }

    prev_pos = i;

    if (bcj_x86_test_msbyte(buf[i + 4])) {
      src = get_unaligned_le32(buf + i + 1);
      for (;;) {
        dest = src - (s->pos + (uint32_t)i + 5);
        if (prev_mask == 0)
          break;

        j = mask_to_bit_num[prev_mask] * 8;
        b = (uint8_t)(dest >> (24 - j));
        if (!bcj_x86_test_msbyte(b))
          break;

        src = dest ^ (((uint32_t)1 << (32 - j)) - 1);
      }

      dest &= 0x01FFFFFF;
      dest |= (uint32_t)0 - (dest & 0x01000000);
      put_unaligned_le32(dest, buf + i + 1);
      i += 4;
    } else {
      prev_mask = (prev_mask << 1) | 1;
    }
  }

  prev_pos = i - prev_pos;
  s->x86_prev_mask = prev_pos > 3 ? 0 : prev_mask << (prev_pos - 1);
  return i;
}
#endif

#ifdef XZ_DEC_POWERPC
static size_t bcj_powerpc(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
{
  size_t i;
  uint32_t instr;

  for (i = 0; i + 4 <= size; i += 4) {
    instr = get_unaligned_be32(buf + i);
    if ((instr & 0xFC000003) == 0x48000001) {
      instr &= 0x03FFFFFC;
      instr -= s->pos + (uint32_t)i;
      instr &= 0x03FFFFFC;
      instr |= 0x48000001;
      put_unaligned_be32(instr, buf + i);
    }
  }

  return i;
}
#endif

#ifdef XZ_DEC_IA64
static size_t bcj_ia64(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
{
  static const uint8_t branch_table[32] = {
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    4, 4, 6, 6, 0, 0, 7, 7,
    4, 4, 0, 0, 4, 4, 0, 0
  };

  /*
   * The local variables take a little bit stack space, but it's less
   * than what LZMA2 decoder takes, so it doesn't make sense to reduce
   * stack usage here without doing that for the LZMA2 decoder too.
   */

  /* Loop counters */
  size_t i;
  size_t j;

  /* Instruction slot (0, 1, or 2) in the 128-bit instruction word */
  uint32_t slot;

  /* Bitwise offset of the instruction indicated by slot */
  uint32_t bit_pos;

  /* bit_pos split into byte and bit parts */
  uint32_t byte_pos;
  uint32_t bit_res;

  /* Address part of an instruction */
  uint32_t addr;

  /* Mask used to detect which instructions to convert */
  uint32_t mask;

  /* 41-bit instruction stored somewhere in the lowest 48 bits */
  uint64_t instr;

  /* Instruction normalized with bit_res for easier manipulation */
  uint64_t norm;

  for (i = 0; i + 16 <= size; i += 16) {
    mask = branch_table[buf[i] & 0x1F];
    for (slot = 0, bit_pos = 5; slot < 3; ++slot, bit_pos += 41) {
      if (((mask >> slot) & 1) == 0)
        continue;

      byte_pos = bit_pos >> 3;
      bit_res = bit_pos & 7;
      instr = 0;
      for (j = 0; j < 6; ++j)
        instr |= (uint64_t)(buf[i + j + byte_pos])
            << (8 * j);

      norm = instr >> bit_res;

      if (((norm >> 37) & 0x0F) == 0x05
          && ((norm >> 9) & 0x07) == 0) {
        addr = (norm >> 13) & 0x0FFFFF;
        addr |= ((uint32_t)(norm >> 36) & 1) << 20;
        addr <<= 4;
        addr -= s->pos + (uint32_t)i;
        addr >>= 4;

        norm &= ~((uint64_t)0x8FFFFF << 13);
        norm |= (uint64_t)(addr & 0x0FFFFF) << 13;
        norm |= (uint64_t)(addr & 0x100000)
            << (36 - 20);

        instr &= (1 << bit_res) - 1;
        instr |= norm << bit_res;

        for (j = 0; j < 6; j++)
          buf[i + j + byte_pos]
            = (uint8_t)(instr >> (8 * j));
      }
    }
  }

  return i;
}
#endif

#ifdef XZ_DEC_ARM
static size_t bcj_arm(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
{
  size_t i;
  uint32_t addr;

  for (i = 0; i + 4 <= size; i += 4) {
    if (buf[i + 3] == 0xEB) {
      addr = (uint32_t)buf[i] | ((uint32_t)buf[i + 1] << 8)
          | ((uint32_t)buf[i + 2] << 16);
      addr <<= 2;
      addr -= s->pos + (uint32_t)i + 8;
      addr >>= 2;
      buf[i] = (uint8_t)addr;
      buf[i + 1] = (uint8_t)(addr >> 8);
      buf[i + 2] = (uint8_t)(addr >> 16);
    }
  }

  return i;
}
#endif

#ifdef XZ_DEC_ARMTHUMB
static size_t bcj_armthumb(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
{
  size_t i;
  uint32_t addr;

  for (i = 0; i + 4 <= size; i += 2) {
    if ((buf[i + 1] & 0xF8) == 0xF0
        && (buf[i + 3] & 0xF8) == 0xF8) {
      addr = (((uint32_t)buf[i + 1] & 0x07) << 19)
          | ((uint32_t)buf[i] << 11)
          | (((uint32_t)buf[i + 3] & 0x07) << 8)
          | (uint32_t)buf[i + 2];
      addr <<= 1;
      addr -= s->pos + (uint32_t)i + 4;
      addr >>= 1;
      buf[i + 1] = (uint8_t)(0xF0 | ((addr >> 19) & 0x07));
      buf[i] = (uint8_t)(addr >> 11);
      buf[i + 3] = (uint8_t)(0xF8 | ((addr >> 8) & 0x07));
      buf[i + 2] = (uint8_t)addr;
      i += 2;
    }
  }

  return i;
}
#endif

#ifdef XZ_DEC_SPARC
static size_t bcj_sparc(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
{
  size_t i;
  uint32_t instr;

  for (i = 0; i + 4 <= size; i += 4) {
    instr = get_unaligned_be32(buf + i);
    if ((instr >> 22) == 0x100 || (instr >> 22) == 0x1FF) {
      instr <<= 2;
      instr -= s->pos + (uint32_t)i;
      instr >>= 2;
      instr = ((uint32_t)0x40000000 - (instr & 0x400000))
          | 0x40000000 | (instr & 0x3FFFFF);
      put_unaligned_be32(instr, buf + i);
    }
  }

  return i;
}
#endif

/*
 * Apply the selected BCJ filter. Update *pos and s->pos to match the amount
 * of data that got filtered.
 *
 * NOTE: This is implemented as a switch statement to avoid using function
 * pointers, which could be problematic in the kernel boot code, which must
 * avoid pointers to static data (at least on x86).
 */
static void bcj_apply(struct xz_dec_bcj *s,
          uint8_t *buf, size_t *pos, size_t size)
{
  size_t filtered;

  buf += *pos;
  size -= *pos;

  switch (s->type) {
#ifdef XZ_DEC_X86
  case BCJ_X86:
    filtered = bcj_x86(s, buf, size);
    break;
#endif
#ifdef XZ_DEC_POWERPC
  case BCJ_POWERPC:
    filtered = bcj_powerpc(s, buf, size);
    break;
#endif
#ifdef XZ_DEC_IA64
  case BCJ_IA64:
    filtered = bcj_ia64(s, buf, size);
    break;
#endif
#ifdef XZ_DEC_ARM
  case BCJ_ARM:
    filtered = bcj_arm(s, buf, size);
    break;
#endif
#ifdef XZ_DEC_ARMTHUMB
  case BCJ_ARMTHUMB:
    filtered = bcj_armthumb(s, buf, size);
    break;
#endif
#ifdef XZ_DEC_SPARC
  case BCJ_SPARC:
    filtered = bcj_sparc(s, buf, size);
    break;
#endif
  default:
    /* Never reached but silence compiler warnings. */
    filtered = 0;
    break;
  }

  *pos += filtered;
  s->pos += filtered;
}

/*
 * Flush pending filtered data from temp to the output buffer.
 * Move the remaining mixture of possibly filtered and unfiltered
 * data to the beginning of temp.
 */
static void bcj_flush(struct xz_dec_bcj *s, struct xz_buf *b)
{
  size_t copy_size;

  copy_size = min_t(size_t, s->temp.filtered, b->out_size - b->out_pos);
  memcpy(b->out + b->out_pos, s->temp.buf, copy_size);
  b->out_pos += copy_size;

  s->temp.filtered -= copy_size;
  s->temp.size -= copy_size;
  memmove(s->temp.buf, s->temp.buf + copy_size, s->temp.size);
}

/*
 * The BCJ filter functions are primitive in sense that they process the
 * data in chunks of 1-16 bytes. To hide this issue, this function does
 * some buffering.
 */
enum xz_ret xz_dec_bcj_run(struct xz_dec_bcj *s,
             struct xz_dec_lzma2 *lzma2,
             struct xz_buf *b)
{
  size_t out_start;

  /*
   * Flush pending already filtered data to the output buffer. Return
   * immediatelly if we couldn't flush everything, or if the next
   * filter in the chain had already returned XZ_STREAM_END.
   */
  if (s->temp.filtered > 0) {
    bcj_flush(s, b);
    if (s->temp.filtered > 0)
      return XZ_OK;

    if (s->ret == XZ_STREAM_END)
      return XZ_STREAM_END;
  }

  /*
   * If we have more output space than what is currently pending in
   * temp, copy the unfiltered data from temp to the output buffer
   * and try to fill the output buffer by decoding more data from the
   * next filter in the chain. Apply the BCJ filter on the new data
   * in the output buffer. If everything cannot be filtered, copy it
   * to temp and rewind the output buffer position accordingly.
   *
   * This needs to be always run when temp.size == 0 to handle a special
   * case where the output buffer is full and the next filter has no
   * more output coming but hasn't returned XZ_STREAM_END yet.
   */
  if (s->temp.size < b->out_size - b->out_pos || s->temp.size == 0) {
    out_start = b->out_pos;
    memcpy(b->out + b->out_pos, s->temp.buf, s->temp.size);
    b->out_pos += s->temp.size;

    s->ret = xz_dec_lzma2_run(lzma2, b);
    if (s->ret != XZ_STREAM_END
        && (s->ret != XZ_OK ))
      return s->ret;

    bcj_apply(s, b->out, &out_start, b->out_pos);

    /*
     * As an exception, if the next filter returned XZ_STREAM_END,
     * we can do that too, since the last few bytes that remain
     * unfiltered are meant to remain unfiltered.
     */
    if (s->ret == XZ_STREAM_END)
      return XZ_STREAM_END;

    s->temp.size = b->out_pos - out_start;
    b->out_pos -= s->temp.size;
    memcpy(s->temp.buf, b->out + b->out_pos, s->temp.size);

    /*
     * If there wasn't enough input to the next filter to fill
     * the output buffer with unfiltered data, there's no point
     * to try decoding more data to temp.
     */
    if (b->out_pos + s->temp.size < b->out_size)
      return XZ_OK;
  }

  /*
   * We have unfiltered data in temp. If the output buffer isn't full
   * yet, try to fill the temp buffer by decoding more data from the
   * next filter. Apply the BCJ filter on temp. Then we hopefully can
   * fill the actual output buffer by copying filtered data from temp.
   * A mix of filtered and unfiltered data may be left in temp; it will
   * be taken care on the next call to this function.
   */
  if (b->out_pos < b->out_size) {
    /* Make b->out{,_pos,_size} temporarily point to s->temp. */
    s->out = b->out;
    s->out_pos = b->out_pos;
    s->out_size = b->out_size;
    b->out = s->temp.buf;
    b->out_pos = s->temp.size;
    b->out_size = sizeof(s->temp.buf);

    s->ret = xz_dec_lzma2_run(lzma2, b);

    s->temp.size = b->out_pos;
    b->out = s->out;
    b->out_pos = s->out_pos;
    b->out_size = s->out_size;

    if (s->ret != XZ_OK && s->ret != XZ_STREAM_END)
      return s->ret;

    bcj_apply(s, s->temp.buf, &s->temp.filtered, s->temp.size);

    /*
     * If the next filter returned XZ_STREAM_END, we mark that
     * everything is filtered, since the last unfiltered bytes
     * of the stream are meant to be left as is.
     */
    if (s->ret == XZ_STREAM_END)
      s->temp.filtered = s->temp.size;

    bcj_flush(s, b);
    if (s->temp.filtered > 0)
      return XZ_OK;
  }

  return s->ret;
}

enum xz_ret xz_dec_bcj_reset(struct xz_dec_bcj *s, uint8_t id)
{
  switch (id) {
#ifdef XZ_DEC_X86
  case BCJ_X86:
#endif
#ifdef XZ_DEC_POWERPC
  case BCJ_POWERPC:
#endif
#ifdef XZ_DEC_IA64
  case BCJ_IA64:
#endif
#ifdef XZ_DEC_ARM
  case BCJ_ARM:
#endif
#ifdef XZ_DEC_ARMTHUMB
  case BCJ_ARMTHUMB:
#endif
#ifdef XZ_DEC_SPARC
  case BCJ_SPARC:
#endif
    break;

  default:
    /* Unsupported Filter ID */
    return XZ_OPTIONS_ERROR;
  }

  s->type = id;
  s->ret = XZ_OK;
  s->pos = 0;
  s->x86_prev_mask = 0;
  s->temp.filtered = 0;
  s->temp.size = 0;

  return XZ_OK;
}

#endif
/*
 * LZMA2 decoder
 */


// BEGIN xz_lzma2.h
/*
 * LZMA2 definitions
 *
 */


/* Range coder constants */
#define RC_SHIFT_BITS 8
#define RC_TOP_BITS 24
#define RC_TOP_VALUE (1 << RC_TOP_BITS)
#define RC_BIT_MODEL_TOTAL_BITS 11
#define RC_BIT_MODEL_TOTAL (1 << RC_BIT_MODEL_TOTAL_BITS)
#define RC_MOVE_BITS 5

/*
 * Maximum number of position states. A position state is the lowest pb
 * number of bits of the current uncompressed offset. In some places there
 * are different sets of probabilities for different position states.
 */
#define POS_STATES_MAX (1 << 4)

/*
 * This enum is used to track which LZMA symbols have occurred most recently
 * and in which order. This information is used to predict the next symbol.
 *
 * Symbols:
 *  - Literal: One 8-bit byte
 *  - Match: Repeat a chunk of data at some distance
 *  - Long repeat: Multi-byte match at a recently seen distance
 *  - Short repeat: One-byte repeat at a recently seen distance
 *
 * The symbol names are in from STATE_oldest_older_previous. REP means
 * either short or long repeated match, and NONLIT means any non-literal.
 */
enum lzma_state {
  STATE_LIT_LIT,
  STATE_MATCH_LIT_LIT,
  STATE_REP_LIT_LIT,
  STATE_SHORTREP_LIT_LIT,
  STATE_MATCH_LIT,
  STATE_REP_LIT,
  STATE_SHORTREP_LIT,
  STATE_LIT_MATCH,
  STATE_LIT_LONGREP,
  STATE_LIT_SHORTREP,
  STATE_NONLIT_MATCH,
  STATE_NONLIT_REP
};

/* Total number of states */
#define STATES 12

/* The lowest 7 states indicate that the previous state was a literal. */
#define LIT_STATES 7

/* Indicate that the latest symbol was a literal. */
static inline void lzma_state_literal(enum lzma_state *state)
{
  if (*state <= STATE_SHORTREP_LIT_LIT)
    *state = STATE_LIT_LIT;
  else if (*state <= STATE_LIT_SHORTREP)
    *state -= 3;
  else
    *state -= 6;
}

/* Indicate that the latest symbol was a match. */
static inline void lzma_state_match(enum lzma_state *state)
{
  *state = *state < LIT_STATES ? STATE_LIT_MATCH : STATE_NONLIT_MATCH;
}

/* Indicate that the latest state was a long repeated match. */
static inline void lzma_state_long_rep(enum lzma_state *state)
{
  *state = *state < LIT_STATES ? STATE_LIT_LONGREP : STATE_NONLIT_REP;
}

/* Indicate that the latest symbol was a short match. */
static inline void lzma_state_short_rep(enum lzma_state *state)
{
  *state = *state < LIT_STATES ? STATE_LIT_SHORTREP : STATE_NONLIT_REP;
}

/* Test if the previous symbol was a literal. */
static inline int lzma_state_is_literal(enum lzma_state state)
{
  return state < LIT_STATES;
}

/* Each literal coder is divided in three sections:
 *   - 0x001-0x0FF: Without match byte
 *   - 0x101-0x1FF: With match byte; match bit is 0
 *   - 0x201-0x2FF: With match byte; match bit is 1
 *
 * Match byte is used when the previous LZMA symbol was something else than
 * a literal (that is, it was some kind of match).
 */
#define LITERAL_CODER_SIZE 0x300

/* Maximum number of literal coders */
#define LITERAL_CODERS_MAX (1 << 4)

/* Minimum length of a match is two bytes. */
#define MATCH_LEN_MIN 2

/* Match length is encoded with 4, 5, or 10 bits.
 *
 * Length   Bits
 *  2-9      4 = Choice=0 + 3 bits
 * 10-17     5 = Choice=1 + Choice2=0 + 3 bits
 * 18-273   10 = Choice=1 + Choice2=1 + 8 bits
 */
#define LEN_LOW_BITS 3
#define LEN_LOW_SYMBOLS (1 << LEN_LOW_BITS)
#define LEN_MID_BITS 3
#define LEN_MID_SYMBOLS (1 << LEN_MID_BITS)
#define LEN_HIGH_BITS 8
#define LEN_HIGH_SYMBOLS (1 << LEN_HIGH_BITS)
#define LEN_SYMBOLS (LEN_LOW_SYMBOLS + LEN_MID_SYMBOLS + LEN_HIGH_SYMBOLS)

/*
 * Maximum length of a match is 273 which is a result of the encoding
 * described above.
 */
#define MATCH_LEN_MAX (MATCH_LEN_MIN + LEN_SYMBOLS - 1)

/*
 * Different sets of probabilities are used for match distances that have
 * very short match length: Lengths of 2, 3, and 4 bytes have a separate
 * set of probabilities for each length. The matches with longer length
 * use a shared set of probabilities.
 */
#define DIST_STATES 4

/*
 * Get the index of the appropriate probability array for decoding
 * the distance slot.
 */
static inline uint32_t lzma_get_dist_state(uint32_t len)
{
  return len < DIST_STATES + MATCH_LEN_MIN
      ? len - MATCH_LEN_MIN : DIST_STATES - 1;
}

/*
 * The highest two bits of a 32-bit match distance are encoded using six bits.
 * This six-bit value is called a distance slot. This way encoding a 32-bit
 * value takes 6-36 bits, larger values taking more bits.
 */
#define DIST_SLOT_BITS 6
#define DIST_SLOTS (1 << DIST_SLOT_BITS)

/* Match distances up to 127 are fully encoded using probabilities. Since
 * the highest two bits (distance slot) are always encoded using six bits,
 * the distances 0-3 don't need any additional bits to encode, since the
 * distance slot itself is the same as the actual distance. DIST_MODEL_START
 * indicates the first distance slot where at least one additional bit is
 * needed.
 */
#define DIST_MODEL_START 4

/*
 * Match distances greater than 127 are encoded in three pieces:
 *   - distance slot: the highest two bits
 *   - direct bits: 2-26 bits below the highest two bits
 *   - alignment bits: four lowest bits
 *
 * Direct bits don't use any probabilities.
 *
 * The distance slot value of 14 is for distances 128-191.
 */
#define DIST_MODEL_END 14

/* Distance slots that indicate a distance <= 127. */
#define FULL_DISTANCES_BITS (DIST_MODEL_END / 2)
#define FULL_DISTANCES (1 << FULL_DISTANCES_BITS)

/*
 * For match distances greater than 127, only the highest two bits and the
 * lowest four bits (alignment) is encoded using probabilities.
 */
#define ALIGN_BITS 4
#define ALIGN_SIZE (1 << ALIGN_BITS)
#define ALIGN_MASK (ALIGN_SIZE - 1)

/* Total number of all probability variables */
#define PROBS_TOTAL (1846 + LITERAL_CODERS_MAX * LITERAL_CODER_SIZE)

/*
 * LZMA remembers the four most recent match distances. Reusing these
 * distances tends to take less space than re-encoding the actual
 * distance value.
 */
#define REPS 4


// END xz_lzma2.h

/*
 * Range decoder initialization eats the first five bytes of each LZMA chunk.
 */
#define RC_INIT_BYTES 5

/*
 * Minimum number of usable input buffer to safely decode one LZMA symbol.
 * The worst case is that we decode 22 bits using probabilities and 26
 * direct bits. This may decode at maximum of 20 bytes of input. However,
 * lzma_main() does an extra normalization before returning, thus we
 * need to put 21 here.
 */
#define LZMA_IN_REQUIRED 21

/*
 * Dictionary (history buffer)
 *
 * These are always true:
 *    start <= pos <= full <= end
 *    pos <= limit <= end
 *    end == size
 *    size <= size_max
 *    allocated <= size
 *
 * Most of these variables are size_t as a relic of single-call mode,
 * in which the dictionary variables address the actual output
 * buffer directly.
 */
struct dictionary {
  /* Beginning of the history buffer */
  uint8_t *buf;

  /* Old position in buf (before decoding more data) */
  size_t start;

  /* Position in buf */
  size_t pos;

  /*
   * How full dictionary is. This is used to detect corrupt input that
   * would read beyond the beginning of the uncompressed stream.
   */
  size_t full;

  /* Write limit; we don't write to buf[limit] or later bytes. */
  size_t limit;

  /* End of the dictionary buffer. This is the same as the dictionary size. */
  size_t end;

  /*
   * Size of the dictionary as specified in Block Header. This is used
   * together with "full" to detect corrupt input that would make us
   * read beyond the beginning of the uncompressed stream.
   */
  uint32_t size;

  /*
   * Maximum allowed dictionary size.
   */
  uint32_t size_max;

  /*
   * Amount of memory currently allocated for the dictionary.
   */
  uint32_t allocated;
};

/* Range decoder */
struct rc_dec {
  uint32_t range;
  uint32_t code;

  /*
   * Number of initializing bytes remaining to be read
   * by rc_read_init().
   */
  uint32_t init_bytes_left;

  /*
   * Buffer from which we read our input. It can be either
   * temp.buf or the caller-provided input buffer.
   */
  const uint8_t *in;
  size_t in_pos;
  size_t in_limit;
};

/* Probabilities for a length decoder. */
struct lzma_len_dec {
  /* Probability of match length being at least 10 */
  uint16_t choice;

  /* Probability of match length being at least 18 */
  uint16_t choice2;

  /* Probabilities for match lengths 2-9 */
  uint16_t low[POS_STATES_MAX][LEN_LOW_SYMBOLS];

  /* Probabilities for match lengths 10-17 */
  uint16_t mid[POS_STATES_MAX][LEN_MID_SYMBOLS];

  /* Probabilities for match lengths 18-273 */
  uint16_t high[LEN_HIGH_SYMBOLS];
};

struct lzma_dec {
  /* Distances of latest four matches */
  uint32_t rep0;
  uint32_t rep1;
  uint32_t rep2;
  uint32_t rep3;

  /* Types of the most recently seen LZMA symbols */
  enum lzma_state state;

  /*
   * Length of a match. This is updated so that dict_repeat can
   * be called again to finish repeating the whole match.
   */
  uint32_t len;

  /*
   * LZMA properties or related bit masks (number of literal
   * context bits, a mask dervied from the number of literal
   * position bits, and a mask dervied from the number
   * position bits)
   */
  uint32_t lc;
  uint32_t literal_pos_mask; /* (1 << lp) - 1 */
  uint32_t pos_mask;         /* (1 << pb) - 1 */

  /* If 1, it's a match. Otherwise it's a single 8-bit literal. */
  uint16_t is_match[STATES][POS_STATES_MAX];

  /* If 1, it's a repeated match. The distance is one of rep0 .. rep3. */
  uint16_t is_rep[STATES];

  /*
   * If 0, distance of a repeated match is rep0.
   * Otherwise check is_rep1.
   */
  uint16_t is_rep0[STATES];

  /*
   * If 0, distance of a repeated match is rep1.
   * Otherwise check is_rep2.
   */
  uint16_t is_rep1[STATES];

  /* If 0, distance of a repeated match is rep2. Otherwise it is rep3. */
  uint16_t is_rep2[STATES];

  /*
   * If 1, the repeated match has length of one byte. Otherwise
   * the length is decoded from rep_len_decoder.
   */
  uint16_t is_rep0_long[STATES][POS_STATES_MAX];

  /*
   * Probability tree for the highest two bits of the match
   * distance. There is a separate probability tree for match
   * lengths of 2 (i.e. MATCH_LEN_MIN), 3, 4, and [5, 273].
   */
  uint16_t dist_slot[DIST_STATES][DIST_SLOTS];

  /*
   * Probility trees for additional bits for match distance
   * when the distance is in the range [4, 127].
   */
  uint16_t dist_special[FULL_DISTANCES - DIST_MODEL_END];

  /*
   * Probability tree for the lowest four bits of a match
   * distance that is equal to or greater than 128.
   */
  uint16_t dist_align[ALIGN_SIZE];

  /* Length of a normal match */
  struct lzma_len_dec match_len_dec;

  /* Length of a repeated match */
  struct lzma_len_dec rep_len_dec;

  /* Probabilities of literals */
  uint16_t literal[LITERAL_CODERS_MAX][LITERAL_CODER_SIZE];
};

struct lzma2_dec {
  /* Position in xz_dec_lzma2_run(). */
  enum lzma2_seq {
    SEQ_CONTROL,
    SEQ_UNCOMPRESSED_1,
    SEQ_UNCOMPRESSED_2,
    SEQ_COMPRESSED_0,
    SEQ_COMPRESSED_1,
    SEQ_PROPERTIES,
    SEQ_LZMA_PREPARE,
    SEQ_LZMA_RUN,
    SEQ_COPY
  } sequence;

  /* Next position after decoding the compressed size of the chunk. */
  enum lzma2_seq next_sequence;

  /* Uncompressed size of LZMA chunk (2 MiB at maximum) */
  uint32_t uncompressed;

  /*
   * Compressed size of LZMA chunk or compressed/uncompressed
   * size of uncompressed chunk (64 KiB at maximum)
   */
  uint32_t compressed;

  /*
   * True if dictionary reset is needed. This is false before
   * the first chunk (LZMA or uncompressed).
   */
  int need_dict_reset;

  /*
   * True if new LZMA properties are needed. This is false
   * before the first LZMA chunk.
   */
  int need_props;
};

struct xz_dec_lzma2 {
  /*
   * The order below is important on x86 to reduce code size and
   * it shouldn't hurt on other platforms. Everything up to and
   * including lzma.pos_mask are in the first 128 bytes on x86-32,
   * which allows using smaller instructions to access those
   * variables. On x86-64, fewer variables fit into the first 128
   * bytes, but this is still the best order without sacrificing
   * the readability by splitting the structures.
   */
  struct rc_dec rc;
  struct dictionary dict;
  struct lzma2_dec lzma2;
  struct lzma_dec lzma;

  /*
   * Temporary buffer which holds small number of input bytes between
   * decoder calls. See lzma2_lzma() for details.
   */
  struct {
    uint32_t size;
    uint8_t buf[3 * LZMA_IN_REQUIRED];
  } temp;
};

/**************
 * Dictionary *
 **************/

/* Reset the dictionary state. */
static void dict_reset(struct dictionary *dict)
{
  dict->start = 0;
  dict->pos = 0;
  dict->limit = 0;
  dict->full = 0;
}

/* Set dictionary write limit */
static void dict_limit(struct dictionary *dict, size_t out_max)
{
  if (dict->end - dict->pos <= out_max)
    dict->limit = dict->end;
  else
    dict->limit = dict->pos + out_max;
}

/* Return true if at least one byte can be written into the dictionary. */
static inline int dict_has_space(const struct dictionary *dict)
{
  return dict->pos < dict->limit;
}

/*
 * Get a byte from the dictionary at the given distance. The distance is
 * assumed to valid, or as a special case, zero when the dictionary is
 * still empty. This special case is needed for single-call decoding to
 * avoid writing a '\0' to the end of the destination buffer.
 */
static inline uint32_t dict_get(const struct dictionary *dict, uint32_t dist)
{
  size_t offset = dict->pos - dist - 1;

  if (dist >= dict->pos)
    offset += dict->end;

  return dict->full > 0 ? dict->buf[offset] : 0;
}

/*
 * Put one byte into the dictionary. It is assumed that there is space for it.
 */
static inline void dict_put(struct dictionary *dict, uint8_t byte)
{
  dict->buf[dict->pos++] = byte;

  if (dict->full < dict->pos)
    dict->full = dict->pos;
}

/*
 * Repeat given number of bytes from the given distance. If the distance is
 * invalid, false is returned. On success, true is returned and *len is
 * updated to indicate how many bytes were left to be repeated.
 */
static int dict_repeat(struct dictionary *dict, uint32_t *len, uint32_t dist)
{
  size_t back;
  uint32_t left;

  if (dist >= dict->full || dist >= dict->size) return 0;

  left = min_t(size_t, dict->limit - dict->pos, *len);
  *len -= left;

  back = dict->pos - dist - 1;
  if (dist >= dict->pos)
    back += dict->end;

  do {
    dict->buf[dict->pos++] = dict->buf[back++];
    if (back == dict->end)
      back = 0;
  } while (--left > 0);

  if (dict->full < dict->pos)
    dict->full = dict->pos;

  return 1;
}

/* Copy uncompressed data as is from input to dictionary and output buffers. */
static void dict_uncompressed(struct dictionary *dict, struct xz_buf *b,
            uint32_t *left)
{
  size_t copy_size;<--- The scope of the variable 'copy_size' can be reduced.

  while (*left > 0 && b->in_pos < b->in_size
      && b->out_pos < b->out_size) {
    copy_size = min(b->in_size - b->in_pos,
        b->out_size - b->out_pos);
    if (copy_size > dict->end - dict->pos)
      copy_size = dict->end - dict->pos;
    if (copy_size > *left)
      copy_size = *left;

    *left -= copy_size;

    memcpy(dict->buf + dict->pos, b->in + b->in_pos, copy_size);
    dict->pos += copy_size;

    if (dict->full < dict->pos)
      dict->full = dict->pos;

    if (dict->pos == dict->end)
      dict->pos = 0;

    memcpy(b->out + b->out_pos, b->in + b->in_pos,
        copy_size);

    dict->start = dict->pos;

    b->out_pos += copy_size;
    b->in_pos += copy_size;
  }
}

/*
 * Flush pending data from dictionary to b->out. It is assumed that there is
 * enough space in b->out. This is guaranteed because caller uses dict_limit()
 * before decoding data into the dictionary.
 */
static uint32_t dict_flush(struct dictionary *dict, struct xz_buf *b)
{
  size_t copy_size = dict->pos - dict->start;

  if (dict->pos == dict->end)
    dict->pos = 0;

  memcpy(b->out + b->out_pos, dict->buf + dict->start,
      copy_size);

  dict->start = dict->pos;
  b->out_pos += copy_size;
  return copy_size;
}

/*****************
 * Range decoder *
 *****************/

/* Reset the range decoder. */
static void rc_reset(struct rc_dec *rc)
{
  rc->range = (uint32_t)-1;
  rc->code = 0;
  rc->init_bytes_left = RC_INIT_BYTES;
}

/*
 * Read the first five initial bytes into rc->code if they haven't been
 * read already. (Yes, the first byte gets completely ignored.)
 */
static int rc_read_init(struct rc_dec *rc, struct xz_buf *b)
{
  while (rc->init_bytes_left > 0) {
    if (b->in_pos == b->in_size) return 0;

    rc->code = (rc->code << 8) + b->in[b->in_pos++];
    --rc->init_bytes_left;
  }

  return 1;
}

/* Return true if there may not be enough input for the next decoding loop. */
static inline int rc_limit_exceeded(const struct rc_dec *rc)
{
  return rc->in_pos > rc->in_limit;
}

/*
 * Return true if it is possible (from point of view of range decoder) that
 * we have reached the end of the LZMA chunk.
 */
static inline int rc_is_finished(const struct rc_dec *rc)
{
  return rc->code == 0;
}

/* Read the next input byte if needed. */
static inline void rc_normalize(struct rc_dec *rc)
{
  if (rc->range < RC_TOP_VALUE) {
    rc->range <<= RC_SHIFT_BITS;
    rc->code = (rc->code << RC_SHIFT_BITS) + rc->in[rc->in_pos++];
  }
}

/*
 * Decode one bit. In some versions, this function has been splitted in three
 * functions so that the compiler is supposed to be able to more easily avoid
 * an extra branch. In this particular version of the LZMA decoder, this
 * doesn't seem to be a good idea (tested with GCC 3.3.6, 3.4.6, and 4.3.3
 * on x86). Using a non-splitted version results in nicer looking code too.
 *
 * NOTE: This must return an int. Do not make it return a bool or the speed
 * of the code generated by GCC 3.x decreases 10-15 %. (GCC 4.3 doesn't care,
 * and it generates 10-20 % faster code than GCC 3.x from this file anyway.)
 */
static inline int rc_bit(struct rc_dec *rc, uint16_t *prob)
{
  uint32_t bound;
  int bit;

  rc_normalize(rc);
  bound = (rc->range >> RC_BIT_MODEL_TOTAL_BITS) * *prob;
  if (rc->code < bound) {
    rc->range = bound;
    *prob += (RC_BIT_MODEL_TOTAL - *prob) >> RC_MOVE_BITS;
    bit = 0;
  } else {
    rc->range -= bound;
    rc->code -= bound;
    *prob -= *prob >> RC_MOVE_BITS;
    bit = 1;
  }

  return bit;
}

/* Decode a bittree starting from the most significant bit. */
static inline uint32_t rc_bittree(struct rc_dec *rc,
             uint16_t *probs, uint32_t limit)
{
  uint32_t symbol = 1;

  do {
    if (rc_bit(rc, &probs[symbol]))
      symbol = (symbol << 1) + 1;
    else
      symbol <<= 1;
  } while (symbol < limit);

  return symbol;
}

/* Decode a bittree starting from the least significant bit. */
static inline void rc_bittree_reverse(struct rc_dec *rc,
                 uint16_t *probs,
                 uint32_t *dest, uint32_t limit)
{
  uint32_t symbol = 1;
  uint32_t i = 0;

  do {
    if (rc_bit(rc, &probs[symbol])) {
      symbol = (symbol << 1) + 1;
      *dest += 1 << i;
    } else {
      symbol <<= 1;
    }
  } while (++i < limit);
}

/* Decode direct bits (fixed fifty-fifty probability) */
static inline void rc_direct(struct rc_dec *rc, uint32_t *dest, uint32_t limit)
{
  uint32_t mask;

  do {
    rc_normalize(rc);
    rc->range >>= 1;
    rc->code -= rc->range;
    mask = (uint32_t)0 - (rc->code >> 31);
    rc->code += rc->range & mask;
    *dest = (*dest << 1) + (mask + 1);
  } while (--limit > 0);
}

/********
 * LZMA *
 ********/

/* Get pointer to literal coder probability array. */
static uint16_t *lzma_literal_probs(struct xz_dec_lzma2 *s)
{
  uint32_t prev_byte = dict_get(&s->dict, 0);
  uint32_t low = prev_byte >> (8 - s->lzma.lc);
  uint32_t high = (s->dict.pos & s->lzma.literal_pos_mask) << s->lzma.lc;
  return s->lzma.literal[low + high];
}

/* Decode a literal (one 8-bit byte) */
static void lzma_literal(struct xz_dec_lzma2 *s)
{
  uint16_t *probs;
  uint32_t symbol;
  uint32_t match_byte;
  uint32_t match_bit;
  uint32_t offset;
  uint32_t i;

  probs = lzma_literal_probs(s);

  if (lzma_state_is_literal(s->lzma.state)) {
    symbol = rc_bittree(&s->rc, probs, 0x100);
  } else {
    symbol = 1;
    match_byte = dict_get(&s->dict, s->lzma.rep0) << 1;
    offset = 0x100;

    do {
      match_bit = match_byte & offset;
      match_byte <<= 1;
      i = offset + match_bit + symbol;

      if (rc_bit(&s->rc, &probs[i])) {
        symbol = (symbol << 1) + 1;
        offset &= match_bit;
      } else {
        symbol <<= 1;
        offset &= ~match_bit;
      }
    } while (symbol < 0x100);
  }

  dict_put(&s->dict, (uint8_t)symbol);
  lzma_state_literal(&s->lzma.state);
}

/* Decode the length of the match into s->lzma.len. */
static void lzma_len(struct xz_dec_lzma2 *s, struct lzma_len_dec *l,
         uint32_t pos_state)
{
  uint16_t *probs;
  uint32_t limit;

  if (!rc_bit(&s->rc, &l->choice)) {
    probs = l->low[pos_state];
    limit = LEN_LOW_SYMBOLS;
    s->lzma.len = MATCH_LEN_MIN;
  } else {
    if (!rc_bit(&s->rc, &l->choice2)) {
      probs = l->mid[pos_state];
      limit = LEN_MID_SYMBOLS;
      s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS;
    } else {
      probs = l->high;
      limit = LEN_HIGH_SYMBOLS;
      s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS
          + LEN_MID_SYMBOLS;
    }
  }

  s->lzma.len += rc_bittree(&s->rc, probs, limit) - limit;
}

/* Decode a match. The distance will be stored in s->lzma.rep0. */
static void lzma_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
{
  uint16_t *probs;
  uint32_t dist_slot;
  uint32_t limit;

  lzma_state_match(&s->lzma.state);

  s->lzma.rep3 = s->lzma.rep2;
  s->lzma.rep2 = s->lzma.rep1;
  s->lzma.rep1 = s->lzma.rep0;

  lzma_len(s, &s->lzma.match_len_dec, pos_state);

  probs = s->lzma.dist_slot[lzma_get_dist_state(s->lzma.len)];
  dist_slot = rc_bittree(&s->rc, probs, DIST_SLOTS) - DIST_SLOTS;

  if (dist_slot < DIST_MODEL_START) {
    s->lzma.rep0 = dist_slot;
  } else {
    limit = (dist_slot >> 1) - 1;
    s->lzma.rep0 = 2 + (dist_slot & 1);

    if (dist_slot < DIST_MODEL_END) {
      s->lzma.rep0 <<= limit;
      probs = s->lzma.dist_special + s->lzma.rep0
          - dist_slot - 1;
      rc_bittree_reverse(&s->rc, probs,
          &s->lzma.rep0, limit);
    } else {
      rc_direct(&s->rc, &s->lzma.rep0, limit - ALIGN_BITS);
      s->lzma.rep0 <<= ALIGN_BITS;
      rc_bittree_reverse(&s->rc, s->lzma.dist_align,
          &s->lzma.rep0, ALIGN_BITS);
    }
  }
}

/*
 * Decode a repeated match. The distance is one of the four most recently
 * seen matches. The distance will be stored in s->lzma.rep0.
 */
static void lzma_rep_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
{
  uint32_t tmp;

  if (!rc_bit(&s->rc, &s->lzma.is_rep0[s->lzma.state])) {
    if (!rc_bit(&s->rc, &s->lzma.is_rep0_long[
        s->lzma.state][pos_state])) {
      lzma_state_short_rep(&s->lzma.state);
      s->lzma.len = 1;
      return;
    }
  } else {
    if (!rc_bit(&s->rc, &s->lzma.is_rep1[s->lzma.state])) {
      tmp = s->lzma.rep1;
    } else {
      if (!rc_bit(&s->rc, &s->lzma.is_rep2[s->lzma.state])) {
        tmp = s->lzma.rep2;
      } else {
        tmp = s->lzma.rep3;
        s->lzma.rep3 = s->lzma.rep2;
      }

      s->lzma.rep2 = s->lzma.rep1;
    }

    s->lzma.rep1 = s->lzma.rep0;
    s->lzma.rep0 = tmp;
  }

  lzma_state_long_rep(&s->lzma.state);
  lzma_len(s, &s->lzma.rep_len_dec, pos_state);
}

/* LZMA decoder core */
static int lzma_main(struct xz_dec_lzma2 *s)
{
  uint32_t pos_state;

  /*
   * If the dictionary was reached during the previous call, try to
   * finish the possibly pending repeat in the dictionary.
   */
  if (dict_has_space(&s->dict) && s->lzma.len > 0)
    dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0);

  /*
   * Decode more LZMA symbols. One iteration may consume up to
   * LZMA_IN_REQUIRED - 1 bytes.
   */
  while (dict_has_space(&s->dict) && !rc_limit_exceeded(&s->rc)) {
    pos_state = s->dict.pos & s->lzma.pos_mask;

    if (!rc_bit(&s->rc, &s->lzma.is_match[
        s->lzma.state][pos_state])) {
      lzma_literal(s);
    } else {
      if (rc_bit(&s->rc, &s->lzma.is_rep[s->lzma.state]))
        lzma_rep_match(s, pos_state);
      else
        lzma_match(s, pos_state);

      if (!dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0))
        return 0;
    }
  }

  /*
   * Having the range decoder always normalized when we are outside
   * this function makes it easier to correctly handle end of the chunk.
   */
  rc_normalize(&s->rc);

  return 1;
}

/*
 * Reset the LZMA decoder and range decoder state. Dictionary is nore reset
 * here, because LZMA state may be reset without resetting the dictionary.
 */
static void lzma_reset(struct xz_dec_lzma2 *s)
{
  uint16_t *probs;
  size_t i;

  s->lzma.state = STATE_LIT_LIT;
  s->lzma.rep0 = 0;
  s->lzma.rep1 = 0;
  s->lzma.rep2 = 0;
  s->lzma.rep3 = 0;

  /*
   * All probabilities are initialized to the same value. This hack
   * makes the code smaller by avoiding a separate loop for each
   * probability array.
   *
   * This could be optimized so that only that part of literal
   * probabilities that are actually required. In the common case
   * we would write 12 KiB less.
   */
  probs = s->lzma.is_match[0];
  for (i = 0; i < PROBS_TOTAL; ++i)
    probs[i] = RC_BIT_MODEL_TOTAL / 2;

  rc_reset(&s->rc);
}

/*
 * Decode and validate LZMA properties (lc/lp/pb) and calculate the bit masks
 * from the decoded lp and pb values. On success, the LZMA decoder state is
 * reset and true is returned.
 */
static int lzma_props(struct xz_dec_lzma2 *s, uint8_t props)
{
  if (props > (4 * 5 + 4) * 9 + 8)
    return 0;

  s->lzma.pos_mask = 0;
  while (props >= 9 * 5) {
    props -= 9 * 5;
    ++s->lzma.pos_mask;
  }

  s->lzma.pos_mask = (1 << s->lzma.pos_mask) - 1;

  s->lzma.literal_pos_mask = 0;
  while (props >= 9) {
    props -= 9;
    ++s->lzma.literal_pos_mask;
  }

  s->lzma.lc = props;

  if (s->lzma.lc + s->lzma.literal_pos_mask > 4)
    return 0;

  s->lzma.literal_pos_mask = (1 << s->lzma.literal_pos_mask) - 1;

  lzma_reset(s);

  return 1;
}

/*********
 * LZMA2 *
 *********/

/*
 * The LZMA decoder assumes that if the input limit (s->rc.in_limit) hasn't
 * been exceeded, it is safe to read up to LZMA_IN_REQUIRED bytes. This
 * wrapper function takes care of making the LZMA decoder's assumption safe.
 *
 * As long as there is plenty of input left to be decoded in the current LZMA
 * chunk, we decode directly from the caller-supplied input buffer until
 * there's LZMA_IN_REQUIRED bytes left. Those remaining bytes are copied into
 * s->temp.buf, which (hopefully) gets filled on the next call to this
 * function. We decode a few bytes from the temporary buffer so that we can
 * continue decoding from the caller-supplied input buffer again.
 */
static int lzma2_lzma(struct xz_dec_lzma2 *s, struct xz_buf *b)
{
  size_t in_avail;
  uint32_t tmp;

  in_avail = b->in_size - b->in_pos;
  if (s->temp.size > 0 || s->lzma2.compressed == 0) {
    tmp = 2 * LZMA_IN_REQUIRED - s->temp.size;
    if (tmp > s->lzma2.compressed - s->temp.size)
      tmp = s->lzma2.compressed - s->temp.size;
    if (tmp > in_avail)
      tmp = in_avail;

    memcpy(s->temp.buf + s->temp.size, b->in + b->in_pos, tmp);

    if (s->temp.size + tmp == s->lzma2.compressed) {
      memset(s->temp.buf + s->temp.size + tmp, 0,
          sizeof(s->temp.buf)
            - s->temp.size - tmp);
      s->rc.in_limit = s->temp.size + tmp;
    } else if (s->temp.size + tmp < LZMA_IN_REQUIRED) {
      s->temp.size += tmp;
      b->in_pos += tmp;
      return 1;
    } else {
      s->rc.in_limit = s->temp.size + tmp - LZMA_IN_REQUIRED;
    }

    s->rc.in = s->temp.buf;
    s->rc.in_pos = 0;

    if (!lzma_main(s) || s->rc.in_pos > s->temp.size + tmp)
      return 0;

    s->lzma2.compressed -= s->rc.in_pos;

    if (s->rc.in_pos < s->temp.size) {
      s->temp.size -= s->rc.in_pos;
      memmove(s->temp.buf, s->temp.buf + s->rc.in_pos,
          s->temp.size);
      return 1;
    }

    b->in_pos += s->rc.in_pos - s->temp.size;
    s->temp.size = 0;
  }

  in_avail = b->in_size - b->in_pos;
  if (in_avail >= LZMA_IN_REQUIRED) {
    s->rc.in = b->in;
    s->rc.in_pos = b->in_pos;

    if (in_avail >= s->lzma2.compressed + LZMA_IN_REQUIRED)
      s->rc.in_limit = b->in_pos + s->lzma2.compressed;
    else
      s->rc.in_limit = b->in_size - LZMA_IN_REQUIRED;

    if (!lzma_main(s))
      return 0;

    in_avail = s->rc.in_pos - b->in_pos;
    if (in_avail > s->lzma2.compressed) return 0;

    s->lzma2.compressed -= in_avail;
    b->in_pos = s->rc.in_pos;
  }

  in_avail = b->in_size - b->in_pos;
  if (in_avail < LZMA_IN_REQUIRED) {
    if (in_avail > s->lzma2.compressed)
      in_avail = s->lzma2.compressed;

    memcpy(s->temp.buf, b->in + b->in_pos, in_avail);
    s->temp.size = in_avail;
    b->in_pos += in_avail;
  }

  return 1;
}

/*
 * Take care of the LZMA2 control layer, and forward the job of actual LZMA
 * decoding or copying of uncompressed chunks to other functions.
 */
enum xz_ret xz_dec_lzma2_run(struct xz_dec_lzma2 *s,
               struct xz_buf *b)
{
  uint32_t tmp;

  while (b->in_pos < b->in_size || s->lzma2.sequence == SEQ_LZMA_RUN) {
    switch (s->lzma2.sequence) {
    case SEQ_CONTROL:
      /*
       * LZMA2 control byte
       *
       * Exact values:
       *   0x00   End marker
       *   0x01   Dictionary reset followed by
       *          an uncompressed chunk
       *   0x02   Uncompressed chunk (no dictionary reset)
       *
       * Highest three bits (s->control & 0xE0):
       *   0xE0   Dictionary reset, new properties and state
       *          reset, followed by LZMA compressed chunk
       *   0xC0   New properties and state reset, followed
       *          by LZMA compressed chunk (no dictionary
       *          reset)
       *   0xA0   State reset using old properties,
       *          followed by LZMA compressed chunk (no
       *          dictionary reset)
       *   0x80   LZMA chunk (no dictionary or state reset)
       *
       * For LZMA compressed chunks, the lowest five bits
       * (s->control & 1F) are the highest bits of the
       * uncompressed size (bits 16-20).
       *
       * A new LZMA2 stream must begin with a dictionary
       * reset. The first LZMA chunk must set new
       * properties and reset the LZMA state.
       *
       * Values that don't match anything described above
       * are invalid and we return XZ_DATA_ERROR.
       */
      tmp = b->in[b->in_pos++];

      if (tmp == 0x00)
        return XZ_STREAM_END;

      if (tmp >= 0xE0 || tmp == 0x01) {
        s->lzma2.need_props = 1;
        s->lzma2.need_dict_reset = 0;
        dict_reset(&s->dict);
      } else if (s->lzma2.need_dict_reset) {
        return XZ_DATA_ERROR;
      }

      if (tmp >= 0x80) {
        s->lzma2.uncompressed = (tmp & 0x1F) << 16;
        s->lzma2.sequence = SEQ_UNCOMPRESSED_1;

        if (tmp >= 0xC0) {
          /*
           * When there are new properties,
           * state reset is done at
           * SEQ_PROPERTIES.
           */
          s->lzma2.need_props = 0;
          s->lzma2.next_sequence
              = SEQ_PROPERTIES;

        } else if (s->lzma2.need_props) {
          return XZ_DATA_ERROR;

        } else {
          s->lzma2.next_sequence
              = SEQ_LZMA_PREPARE;
          if (tmp >= 0xA0)
            lzma_reset(s);
        }
      } else {
        if (tmp > 0x02)
          return XZ_DATA_ERROR;

        s->lzma2.sequence = SEQ_COMPRESSED_0;
        s->lzma2.next_sequence = SEQ_COPY;
      }

      break;

    case SEQ_UNCOMPRESSED_1:
      s->lzma2.uncompressed
          += (uint32_t)b->in[b->in_pos++] << 8;
      s->lzma2.sequence = SEQ_UNCOMPRESSED_2;
      break;

    case SEQ_UNCOMPRESSED_2:
      s->lzma2.uncompressed
          += (uint32_t)b->in[b->in_pos++] + 1;
      s->lzma2.sequence = SEQ_COMPRESSED_0;
      break;

    case SEQ_COMPRESSED_0:
      s->lzma2.compressed
          = (uint32_t)b->in[b->in_pos++] << 8;
      s->lzma2.sequence = SEQ_COMPRESSED_1;
      break;

    case SEQ_COMPRESSED_1:
      s->lzma2.compressed
          += (uint32_t)b->in[b->in_pos++] + 1;
      s->lzma2.sequence = s->lzma2.next_sequence;
      break;

    case SEQ_PROPERTIES:
      if (!lzma_props(s, b->in[b->in_pos++]))
        return XZ_DATA_ERROR;

      s->lzma2.sequence = SEQ_LZMA_PREPARE;

    case SEQ_LZMA_PREPARE:
      if (s->lzma2.compressed < RC_INIT_BYTES)
        return XZ_DATA_ERROR;

      if (!rc_read_init(&s->rc, b))
        return XZ_OK;

      s->lzma2.compressed -= RC_INIT_BYTES;
      s->lzma2.sequence = SEQ_LZMA_RUN;

    case SEQ_LZMA_RUN:
      /*
       * Set dictionary limit to indicate how much we want
       * to be encoded at maximum. Decode new data into the
       * dictionary. Flush the new data from dictionary to
       * b->out. Check if we finished decoding this chunk.
       * In case the dictionary got full but we didn't fill
       * the output buffer yet, we may run this loop
       * multiple times without changing s->lzma2.sequence.
       */
      dict_limit(&s->dict, min_t(size_t,
          b->out_size - b->out_pos,
          s->lzma2.uncompressed));
      if (!lzma2_lzma(s, b))
        return XZ_DATA_ERROR;

      s->lzma2.uncompressed -= dict_flush(&s->dict, b);

      if (s->lzma2.uncompressed == 0) {
        if (s->lzma2.compressed > 0 || s->lzma.len > 0
            || !rc_is_finished(&s->rc))
          return XZ_DATA_ERROR;

        rc_reset(&s->rc);
        s->lzma2.sequence = SEQ_CONTROL;

      } else if (b->out_pos == b->out_size
          || (b->in_pos == b->in_size
            && s->temp.size
            < s->lzma2.compressed)) {
        return XZ_OK;
      }

      break;

    case SEQ_COPY:
      dict_uncompressed(&s->dict, b, &s->lzma2.compressed);
      if (s->lzma2.compressed > 0)
        return XZ_OK;

      s->lzma2.sequence = SEQ_CONTROL;
      break;
    }
  }

  return XZ_OK;
}

struct xz_dec_lzma2 *xz_dec_lzma2_create(uint32_t dict_max)
{
  struct xz_dec_lzma2 *s = malloc(sizeof(*s));
  if (s == NULL)
    return NULL;

  s->dict.size_max = dict_max;
  s->dict.buf = NULL;
  s->dict.allocated = 0;

  return s;
}

enum xz_ret xz_dec_lzma2_reset(struct xz_dec_lzma2 *s, uint8_t props)
{
  /* This limits dictionary size to 3 GiB to keep parsing simpler. */
  if (props > 39)
    return XZ_OPTIONS_ERROR;

  s->dict.size = 2 + (props & 1);
  s->dict.size <<= (props >> 1) + 11;

  if (s->dict.size > s->dict.size_max)
    return XZ_MEMLIMIT_ERROR;

  s->dict.end = s->dict.size;

  if (s->dict.allocated < s->dict.size) {
    free(s->dict.buf);
    s->dict.buf = malloc(s->dict.size);
    if (s->dict.buf == NULL) {
      s->dict.allocated = 0;
      return XZ_MEM_ERROR;
    }
  }

  s->lzma.len = 0;

  s->lzma2.sequence = SEQ_CONTROL;
  s->lzma2.need_dict_reset = 1;

  s->temp.size = 0;

  return XZ_OK;
}

/*
 * .xz Stream decoder
 */


// BEGIN xz_stream.h
/*
 * Definitions for handling the .xz file format
 */

/*
 * See the .xz file format specification at
 * http://tukaani.org/xz/xz-file-format.txt
 * to understand the container format.
 */

#define STREAM_HEADER_SIZE 12

#define HEADER_MAGIC "\3757zXZ"
#define HEADER_MAGIC_SIZE 6

#define FOOTER_MAGIC "YZ"
#define FOOTER_MAGIC_SIZE 2

/*
 * Variable-length integer can hold a 63-bit unsigned integer or a special
 * value indicating that the value is unknown.
 *
 * Experimental: vli_type can be defined to uint32_t to save a few bytes
 * in code size (no effect on speed). Doing so limits the uncompressed and
 * compressed size of the file to less than 256 MiB and may also weaken
 * error detection slightly.
 */
typedef uint64_t vli_type;

#define VLI_MAX ((vli_type)-1 / 2)
#define VLI_UNKNOWN ((vli_type)-1)

/* Maximum encoded size of a VLI */
#define VLI_BYTES_MAX (sizeof(vli_type) * 8 / 7)

/* Integrity Check types */
enum xz_check {
  XZ_CHECK_NONE = 0,
  XZ_CHECK_CRC32 = 1,
  XZ_CHECK_CRC64 = 4,
  XZ_CHECK_SHA256 = 10
};

/* Maximum possible Check ID */
#define XZ_CHECK_MAX 15
// END xz_stream.h

#define IS_CRC64(check_type) ((check_type) == XZ_CHECK_CRC64)

/* Hash used to validate the Index field */
struct xz_dec_hash {
  vli_type unpadded;
  vli_type uncompressed;
  uint32_t crc32;
};

struct xz_dec {
  /* Position in dec_main() */
  enum {
    SEQ_STREAM_HEADER,
    SEQ_BLOCK_START,
    SEQ_BLOCK_HEADER,
    SEQ_BLOCK_UNCOMPRESS,
    SEQ_BLOCK_PADDING,
    SEQ_BLOCK_CHECK,
    SEQ_INDEX,
    SEQ_INDEX_PADDING,
    SEQ_INDEX_CRC32,
    SEQ_STREAM_FOOTER
  } sequence;

  /* Position in variable-length integers and Check fields */
  uint32_t pos;

  /* Variable-length integer decoded by dec_vli() */
  vli_type vli;

  /* Saved in_pos and out_pos */
  size_t in_start;
  size_t out_start;

  /* CRC32 or CRC64 value in Block or CRC32 value in Index */
  uint64_t crc;

  /* Type of the integrity check calculated from uncompressed data */
  enum xz_check check_type;

  /*
   * True if the next call to xz_dec_run() is allowed to return
   * XZ_BUF_ERROR.
   */
  int allow_buf_error;

  /* Information stored in Block Header */
  struct {
    /*
     * Value stored in the Compressed Size field, or
     * VLI_UNKNOWN if Compressed Size is not present.
     */
    vli_type compressed;

    /*
     * Value stored in the Uncompressed Size field, or
     * VLI_UNKNOWN if Uncompressed Size is not present.
     */
    vli_type uncompressed;

    /* Size of the Block Header field */
    uint32_t size;
  } block_header;

  /* Information collected when decoding Blocks */
  struct {
    /* Observed compressed size of the current Block */
    vli_type compressed;

    /* Observed uncompressed size of the current Block */
    vli_type uncompressed;

    /* Number of Blocks decoded so far */
    vli_type count;

    /*
     * Hash calculated from the Block sizes. This is used to
     * validate the Index field.
     */
    struct xz_dec_hash hash;
  } block;

  /* Variables needed when verifying the Index field */
  struct {
    /* Position in dec_index() */
    enum {
      SEQ_INDEX_COUNT,
      SEQ_INDEX_UNPADDED,
      SEQ_INDEX_UNCOMPRESSED
    } sequence;

    /* Size of the Index in bytes */
    vli_type size;

    /* Number of Records (matches block.count in valid files) */
    vli_type count;

    /*
     * Hash calculated from the Records (matches block.hash in
     * valid files).
     */
    struct xz_dec_hash hash;
  } index;

  /*
   * Temporary buffer needed to hold Stream Header, Block Header,
   * and Stream Footer. The Block Header is the biggest (1 KiB)
   * so we reserve space according to that. buf[] has to be aligned
   * to a multiple of four bytes; the size_t variables before it
   * should guarantee this.
   */
  struct {
    size_t pos;
    size_t size;
    uint8_t buf[1024];
  } temp;

  struct xz_dec_lzma2 *lzma2;

#ifdef XZ_DEC_BCJ
  struct xz_dec_bcj *bcj;
  int bcj_active;
#endif
};

/* Sizes of the Check field with different Check IDs */
static const uint8_t check_sizes[16] = {
  0,
  4, 4, 4,
  8, 8, 8,
  16, 16, 16,
  32, 32, 32,
  64, 64, 64
};

/*
 * Fill s->temp by copying data starting from b->in[b->in_pos]. Caller
 * must have set s->temp.pos to indicate how much data we are supposed
 * to copy into s->temp.buf. Return true once s->temp.pos has reached
 * s->temp.size.
 */
static int fill_temp(struct xz_dec *s, struct xz_buf *b)
{
  size_t copy_size = min_t(size_t,
      b->in_size - b->in_pos, s->temp.size - s->temp.pos);

  memcpy(s->temp.buf + s->temp.pos, b->in + b->in_pos, copy_size);
  b->in_pos += copy_size;
  s->temp.pos += copy_size;

  if (s->temp.pos == s->temp.size) {
    s->temp.pos = 0;
    return 1;
  }

  return 0;
}

/* Decode a variable-length integer (little-endian base-128 encoding) */
static enum xz_ret dec_vli(struct xz_dec *s, const uint8_t *in,
         size_t *in_pos, size_t in_size)
{
  uint8_t byte;

  if (s->pos == 0)
    s->vli = 0;

  while (*in_pos < in_size) {
    byte = in[*in_pos];
    ++*in_pos;

    s->vli |= (vli_type)(byte & 0x7F) << s->pos;

    if ((byte & 0x80) == 0) {
      /* Don't allow non-minimal encodings. */
      if (byte == 0 && s->pos != 0)
        return XZ_DATA_ERROR;

      s->pos = 0;
      return XZ_STREAM_END;
    }

    s->pos += 7;
    if (s->pos == 7 * VLI_BYTES_MAX)
      return XZ_DATA_ERROR;
  }

  return XZ_OK;
}

/*
 * Decode the Compressed Data field from a Block. Update and validate
 * the observed compressed and uncompressed sizes of the Block so that
 * they don't exceed the values possibly stored in the Block Header
 * (validation assumes that no integer overflow occurs, since vli_type
 * is normally uint64_t). Update the CRC32 or CRC64 value if presence of
 * the CRC32 or CRC64 field was indicated in Stream Header.
 *
 * Once the decoding is finished, validate that the observed sizes match
 * the sizes possibly stored in the Block Header. Update the hash and
 * Block count, which are later used to validate the Index field.
 */
static enum xz_ret dec_block(struct xz_dec *s, struct xz_buf *b)
{
  enum xz_ret ret;

  s->in_start = b->in_pos;
  s->out_start = b->out_pos;

#ifdef XZ_DEC_BCJ
  if (s->bcj_active)
    ret = xz_dec_bcj_run(s->bcj, s->lzma2, b);
  else
#endif
    ret = xz_dec_lzma2_run(s->lzma2, b);

  s->block.compressed += b->in_pos - s->in_start;
  s->block.uncompressed += b->out_pos - s->out_start;

  /*
   * There is no need to separately check for VLI_UNKNOWN, since
   * the observed sizes are always smaller than VLI_UNKNOWN.
   */
  if (s->block.compressed > s->block_header.compressed
      || s->block.uncompressed
        > s->block_header.uncompressed)
    return XZ_DATA_ERROR;

  if (s->check_type == XZ_CHECK_CRC32)
    s->crc = xz_crc32(b->out + s->out_start,
        b->out_pos - s->out_start, s->crc);
  else if (s->check_type == XZ_CHECK_CRC64)
    s->crc = ~(s->crc);
    size_t size = b->out_pos - s->out_start;
    uint8_t *buf = b->out + s->out_start;
    while (size) {
      s->crc = xz_crc64_table[*buf++ ^ (s->crc & 0xFF)] ^ (s->crc >> 8);
      --size;
    }
    s->crc=~(s->crc);

  if (ret == XZ_STREAM_END) {
    if (s->block_header.compressed != VLI_UNKNOWN
        && s->block_header.compressed
          != s->block.compressed)
      return XZ_DATA_ERROR;

    if (s->block_header.uncompressed != VLI_UNKNOWN
        && s->block_header.uncompressed
          != s->block.uncompressed)
      return XZ_DATA_ERROR;

    s->block.hash.unpadded += s->block_header.size
        + s->block.compressed;

    s->block.hash.unpadded += check_sizes[s->check_type];

    s->block.hash.uncompressed += s->block.uncompressed;
    s->block.hash.crc32 = xz_crc32(
        (const uint8_t *)&s->block.hash,
        sizeof(s->block.hash), s->block.hash.crc32);

    ++s->block.count;
  }

  return ret;
}

/* Update the Index size and the CRC32 value. */
static void index_update(struct xz_dec *s, const struct xz_buf *b)
{
  size_t in_used = b->in_pos - s->in_start;
  s->index.size += in_used;
  s->crc = xz_crc32(b->in + s->in_start, in_used, s->crc);
}

/*
 * Decode the Number of Records, Unpadded Size, and Uncompressed Size
 * fields from the Index field. That is, Index Padding and CRC32 are not
 * decoded by this function.
 *
 * This can return XZ_OK (more input needed), XZ_STREAM_END (everything
 * successfully decoded), or XZ_DATA_ERROR (input is corrupt).
 */
static enum xz_ret dec_index(struct xz_dec *s, struct xz_buf *b)
{
  enum xz_ret ret;<--- The scope of the variable 'ret' can be reduced.

  do {
    ret = dec_vli(s, b->in, &b->in_pos, b->in_size);
    if (ret != XZ_STREAM_END) {
      index_update(s, b);
      return ret;
    }

    switch (s->index.sequence) {
    case SEQ_INDEX_COUNT:
      s->index.count = s->vli;

      /*
       * Validate that the Number of Records field
       * indicates the same number of Records as
       * there were Blocks in the Stream.
       */
      if (s->index.count != s->block.count)
        return XZ_DATA_ERROR;

      s->index.sequence = SEQ_INDEX_UNPADDED;
      break;

    case SEQ_INDEX_UNPADDED:
      s->index.hash.unpadded += s->vli;
      s->index.sequence = SEQ_INDEX_UNCOMPRESSED;
      break;

    case SEQ_INDEX_UNCOMPRESSED:
      s->index.hash.uncompressed += s->vli;
      s->index.hash.crc32 = xz_crc32(
          (const uint8_t *)&s->index.hash,
          sizeof(s->index.hash),
          s->index.hash.crc32);
      --s->index.count;
      s->index.sequence = SEQ_INDEX_UNPADDED;
      break;
    }
  } while (s->index.count > 0);

  return XZ_STREAM_END;
}

/*
 * Validate that the next four or eight input bytes match the value
 * of s->crc. s->pos must be zero when starting to validate the first byte.
 * The "bits" argument allows using the same code for both CRC32 and CRC64.
 */
static enum xz_ret crc_validate(struct xz_dec *s, struct xz_buf *b,
        uint32_t bits)
{
  do {
    if (b->in_pos == b->in_size)
      return XZ_OK;

    if (((s->crc >> s->pos) & 0xFF) != b->in[b->in_pos++])
      return XZ_DATA_ERROR;

    s->pos += 8;

  } while (s->pos < bits);

  s->crc = 0;
  s->pos = 0;

  return XZ_STREAM_END;
}

/*
 * Skip over the Check field when the Check ID is not supported.
 * Returns true once the whole Check field has been skipped over.
 */
static int check_skip(struct xz_dec *s, struct xz_buf *b)
{
  while (s->pos < check_sizes[s->check_type]) {
    if (b->in_pos == b->in_size) return 0;

    ++b->in_pos;
    ++s->pos;
  }

  s->pos = 0;

  return 1;
}

/* Decode the Stream Header field (the first 12 bytes of the .xz Stream). */
static enum xz_ret dec_stream_header(struct xz_dec *s)
{
  if (!memeq(s->temp.buf, HEADER_MAGIC, HEADER_MAGIC_SIZE))
    return XZ_FORMAT_ERROR;

  if (xz_crc32(s->temp.buf + HEADER_MAGIC_SIZE, 2, 0)
      != get_le32(s->temp.buf + HEADER_MAGIC_SIZE + 2))
    return XZ_DATA_ERROR;

  if (s->temp.buf[HEADER_MAGIC_SIZE] != 0)
    return XZ_OPTIONS_ERROR;

  /*
   * Of integrity checks, we support none (Check ID = 0),
   * CRC32 (Check ID = 1), and optionally CRC64 (Check ID = 4).
   * However, if XZ_DEC_ANY_CHECK is defined, we will accept other
   * check types too, but then the check won't be verified and
   * a warning (XZ_UNSUPPORTED_CHECK) will be given.
   */
  s->check_type = s->temp.buf[HEADER_MAGIC_SIZE + 1];

  if (s->check_type > XZ_CHECK_MAX)
    return XZ_OPTIONS_ERROR;

  if (s->check_type > XZ_CHECK_CRC32 && !IS_CRC64(s->check_type))
    return XZ_UNSUPPORTED_CHECK;

  return XZ_OK;
}

/* Decode the Stream Footer field (the last 12 bytes of the .xz Stream) */
static enum xz_ret dec_stream_footer(struct xz_dec *s)
{
  if (!memeq(s->temp.buf + 10, FOOTER_MAGIC, FOOTER_MAGIC_SIZE))
    return XZ_DATA_ERROR;

  if (xz_crc32(s->temp.buf + 4, 6, 0) != get_le32(s->temp.buf))
    return XZ_DATA_ERROR;

  /*
   * Validate Backward Size. Note that we never added the size of the
   * Index CRC32 field to s->index.size, thus we use s->index.size / 4
   * instead of s->index.size / 4 - 1.
   */
  if ((s->index.size >> 2) != get_le32(s->temp.buf + 4))
    return XZ_DATA_ERROR;

  if (s->temp.buf[8] != 0 || s->temp.buf[9] != s->check_type)
    return XZ_DATA_ERROR;

  /*
   * Use XZ_STREAM_END instead of XZ_OK to be more convenient
   * for the caller.
   */
  return XZ_STREAM_END;
}

/* Decode the Block Header and initialize the filter chain. */
static enum xz_ret dec_block_header(struct xz_dec *s)
{
  enum xz_ret ret;

  /*
   * Validate the CRC32. We know that the temp buffer is at least
   * eight bytes so this is safe.
   */
  s->temp.size -= 4;
  if (xz_crc32(s->temp.buf, s->temp.size, 0)
      != get_le32(s->temp.buf + s->temp.size))
    return XZ_DATA_ERROR;

  s->temp.pos = 2;

  /*
   * Catch unsupported Block Flags. We support only one or two filters
   * in the chain, so we catch that with the same test.
   */
#ifdef XZ_DEC_BCJ
  if (s->temp.buf[1] & 0x3E)
#else
  if (s->temp.buf[1] & 0x3F)
#endif
    return XZ_OPTIONS_ERROR;

  /* Compressed Size */
  if (s->temp.buf[1] & 0x40) {
    if (dec_vli(s, s->temp.buf, &s->temp.pos, s->temp.size)
          != XZ_STREAM_END)
      return XZ_DATA_ERROR;

    s->block_header.compressed = s->vli;
  } else {
    s->block_header.compressed = VLI_UNKNOWN;
  }

  /* Uncompressed Size */
  if (s->temp.buf[1] & 0x80) {
    if (dec_vli(s, s->temp.buf, &s->temp.pos, s->temp.size)
        != XZ_STREAM_END)
      return XZ_DATA_ERROR;

    s->block_header.uncompressed = s->vli;
  } else {
    s->block_header.uncompressed = VLI_UNKNOWN;
  }

#ifdef XZ_DEC_BCJ
  /* If there are two filters, the first one must be a BCJ filter. */
  s->bcj_active = s->temp.buf[1] & 0x01;
  if (s->bcj_active) {
    if (s->temp.size - s->temp.pos < 2)
      return XZ_OPTIONS_ERROR;

    ret = xz_dec_bcj_reset(s->bcj, s->temp.buf[s->temp.pos++]);
    if (ret != XZ_OK)
      return ret;

    /*
     * We don't support custom start offset,
     * so Size of Properties must be zero.
     */
    if (s->temp.buf[s->temp.pos++] != 0x00)
      return XZ_OPTIONS_ERROR;
  }
#endif

  /* Valid Filter Flags always take at least two bytes. */
  if (s->temp.size - s->temp.pos < 2)
    return XZ_DATA_ERROR;

  /* Filter ID = LZMA2 */
  if (s->temp.buf[s->temp.pos++] != 0x21)
    return XZ_OPTIONS_ERROR;

  /* Size of Properties = 1-byte Filter Properties */
  if (s->temp.buf[s->temp.pos++] != 0x01)
    return XZ_OPTIONS_ERROR;

  /* Filter Properties contains LZMA2 dictionary size. */
  if (s->temp.size - s->temp.pos < 1)
    return XZ_DATA_ERROR;

  ret = xz_dec_lzma2_reset(s->lzma2, s->temp.buf[s->temp.pos++]);
  if (ret != XZ_OK)
    return ret;

  /* The rest must be Header Padding. */
  while (s->temp.pos < s->temp.size)
    if (s->temp.buf[s->temp.pos++] != 0x00)
      return XZ_OPTIONS_ERROR;

  s->temp.pos = 0;
  s->block.compressed = 0;
  s->block.uncompressed = 0;

  return XZ_OK;
}

static enum xz_ret dec_main(struct xz_dec *s, struct xz_buf *b)
{
  enum xz_ret ret;

  /*
   * Store the start position for the case when we are in the middle
   * of the Index field.
   */
  s->in_start = b->in_pos;

  for (;;) {
    switch (s->sequence) {
    case SEQ_STREAM_HEADER:
      /*
       * Stream Header is copied to s->temp, and then
       * decoded from there. This way if the caller
       * gives us only little input at a time, we can
       * still keep the Stream Header decoding code
       * simple. Similar approach is used in many places
       * in this file.
       */
      if (!fill_temp(s, b))
        return XZ_OK;

      /*
       * If dec_stream_header() returns
       * XZ_UNSUPPORTED_CHECK, it is still possible
       * to continue decoding if working in multi-call
       * mode. Thus, update s->sequence before calling
       * dec_stream_header().
       */
      s->sequence = SEQ_BLOCK_START;

      ret = dec_stream_header(s);
      if (ret != XZ_OK)
        return ret;

    case SEQ_BLOCK_START:
      /* We need one byte of input to continue. */
      if (b->in_pos == b->in_size)
        return XZ_OK;

      /* See if this is the beginning of the Index field. */
      if (b->in[b->in_pos] == 0) {
        s->in_start = b->in_pos++;
        s->sequence = SEQ_INDEX;
        break;
      }

      /*
       * Calculate the size of the Block Header and
       * prepare to decode it.
       */
      s->block_header.size
        = ((uint32_t)b->in[b->in_pos] + 1) * 4;

      s->temp.size = s->block_header.size;
      s->temp.pos = 0;
      s->sequence = SEQ_BLOCK_HEADER;

    case SEQ_BLOCK_HEADER:
      if (!fill_temp(s, b))
        return XZ_OK;

      ret = dec_block_header(s);
      if (ret != XZ_OK)
        return ret;

      s->sequence = SEQ_BLOCK_UNCOMPRESS;

    case SEQ_BLOCK_UNCOMPRESS:
      ret = dec_block(s, b);
      if (ret != XZ_STREAM_END)
        return ret;

      s->sequence = SEQ_BLOCK_PADDING;

    case SEQ_BLOCK_PADDING:
      /*
       * Size of Compressed Data + Block Padding
       * must be a multiple of four. We don't need
       * s->block.compressed for anything else
       * anymore, so we use it here to test the size
       * of the Block Padding field.
       */
      while (s->block.compressed & 3) {
        if (b->in_pos == b->in_size)
          return XZ_OK;

        if (b->in[b->in_pos++] != 0)
          return XZ_DATA_ERROR;

        ++s->block.compressed;
      }

      s->sequence = SEQ_BLOCK_CHECK;

    case SEQ_BLOCK_CHECK:
      if (s->check_type == XZ_CHECK_CRC32) {
        ret = crc_validate(s, b, 32);
        if (ret != XZ_STREAM_END)
          return ret;
      }
      else if (IS_CRC64(s->check_type)) {
        ret = crc_validate(s, b, 64);
        if (ret != XZ_STREAM_END)
          return ret;
      }
      else if (!check_skip(s, b)) {
        return XZ_OK;
      }

      s->sequence = SEQ_BLOCK_START;
      break;

    case SEQ_INDEX:
      ret = dec_index(s, b);
      if (ret != XZ_STREAM_END)
        return ret;

      s->sequence = SEQ_INDEX_PADDING;

    case SEQ_INDEX_PADDING:
      while ((s->index.size + (b->in_pos - s->in_start))
          & 3) {
        if (b->in_pos == b->in_size) {
          index_update(s, b);
          return XZ_OK;
        }

        if (b->in[b->in_pos++] != 0)
          return XZ_DATA_ERROR;
      }

      /* Finish the CRC32 value and Index size. */
      index_update(s, b);

      /* Compare the hashes to validate the Index field. */
      if (!memeq(&s->block.hash, &s->index.hash,
          sizeof(s->block.hash)))
        return XZ_DATA_ERROR;

      s->sequence = SEQ_INDEX_CRC32;

    case SEQ_INDEX_CRC32:
      ret = crc_validate(s, b, 32);
      if (ret != XZ_STREAM_END)
        return ret;

      s->temp.size = STREAM_HEADER_SIZE;
      s->sequence = SEQ_STREAM_FOOTER;

    case SEQ_STREAM_FOOTER:
      if (!fill_temp(s, b))
        return XZ_OK;

      return dec_stream_footer(s);
    }
  }

  /* Never reached */
}

/*
 * xz_dec_run() is a wrapper for dec_main() to handle some special cases in
 * multi-call and single-call decoding.
 *
 * In multi-call mode, we must return XZ_BUF_ERROR when it seems clear that we
 * are not going to make any progress anymore. This is to prevent the caller
 * from calling us infinitely when the input file is truncated or otherwise
 * corrupt. Since zlib-style API allows that the caller fills the input buffer
 * only when the decoder doesn't produce any new output, we have to be careful
 * to avoid returning XZ_BUF_ERROR too easily: XZ_BUF_ERROR is returned only
 * after the second consecutive call to xz_dec_run() that makes no progress.
 *
 * In single-call mode, if we couldn't decode everything and no error
 * occurred, either the input is truncated or the output buffer is too small.
 * Since we know that the last input byte never produces any output, we know
 * that if all the input was consumed and decoding wasn't finished, the file
 * must be corrupt. Otherwise the output buffer has to be too small or the
 * file is corrupt in a way that decoding it produces too big output.
 *
 * If single-call decoding fails, we reset b->in_pos and b->out_pos back to
 * their original values. This is because with some filter chains there won't
 * be any valid uncompressed data in the output buffer unless the decoding
 * actually succeeds (that's the price to pay of using the output buffer as
 * the workspace).
 */
enum xz_ret xz_dec_run(struct xz_dec *s, struct xz_buf *b)
{
  size_t in_start;
  size_t out_start;
  enum xz_ret ret;

  in_start = b->in_pos;
  out_start = b->out_pos;
  ret = dec_main(s, b);

  if (ret == XZ_OK && in_start == b->in_pos && out_start == b->out_pos) {
    if (s->allow_buf_error)
      ret = XZ_BUF_ERROR;

    s->allow_buf_error = 1;
  } else {
    s->allow_buf_error = 0;
  }

  return ret;
}

struct xz_dec *xz_dec_init(uint32_t dict_max)
{
  struct xz_dec *s = malloc(sizeof(*s));
  if (!s)
    return NULL;

#ifdef XZ_DEC_BCJ
  s->bcj = malloc(sizeof(*s->bcj));
  if (!s->bcj)
    goto error_bcj;
#endif

  s->lzma2 = xz_dec_lzma2_create(dict_max);
  if (s->lzma2 == NULL)
    goto error_lzma2;

  xz_dec_reset(s);
  return s;

error_lzma2:
#ifdef XZ_DEC_BCJ
  free(s->bcj);
error_bcj:
#endif
  free(s);
  return NULL;
}

void xz_dec_reset(struct xz_dec *s)
{
  s->sequence = SEQ_STREAM_HEADER;
  s->allow_buf_error = 0;
  s->pos = 0;
  s->crc = 0;
  memset(&s->block, 0, sizeof(s->block));
  memset(&s->index, 0, sizeof(s->index));
  s->temp.pos = 0;
  s->temp.size = STREAM_HEADER_SIZE;
}

void xz_dec_end(struct xz_dec *s)
{
  if (s != NULL) {
    free((s->lzma2)->dict.buf);
    free(s->lzma2);

#ifdef XZ_DEC_BCJ
    free(s->bcj);
#endif
    free(s);
  }
}